Ganoderma tsuage promotes pain sensitivity in aging mice

Ganoderma tsuage promotes pain sensitivity in aging mice

  • Lin, Y. Y. & Huang, C. S. Aging in Taiwan: Building a society for active aging and aging in place. Gerontologist 56(2), 176–183 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gerland, P. What’s beneath the future: World population prospects. In Semaine Data-SHS (2023).

  • Lautenbacher, S. et al. Age changes in pain perception: A systematic-review and meta-analysis of age effects on pain and tolerance thresholds. Neurosci. Biobehav. Rev. 75, 104–113 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sherman, E. D. & Robillard, E. Sensitivity to pain in relationship to age. J. Am. Geriatr. Soc. 12, 1037–1044 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Covinsky, K. E. et al. Pain, functional limitations, and aging. J. Am. Geriatr. Soc. 57(9), 1556–1561 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gagliese, L. Pain and aging: The emergence of a new subfield of pain research. J. Pain 10(4), 343–353 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Tinnirello, A., Mazzoleni, S. & Santi, C. Chronic pain in the elderly: Mechanisms and distinctive features. Biomolecules 11, 8 (2021).

    Article 

    Google Scholar 

  • Riley, J. L. et al. Age and race effects on pain sensitivity and modulation among middle-aged and older adults. J. Pain 15(3), 272–282 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Omar, N. M. et al. Influence of age on pain sensitivity in response to paw pressure and formalin injection in rats: A role of nitric oxide. Gen. Physiol. Biophys. 31(2), 185–194 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Legg, E. D., Novejarque, A. & Rice, A. S. The three ages of rat: The influence of rodent age on affective and cognitive outcome measures in peripheral neuropathic pain. Pain 144(1–2), 12–13 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Sadler, K. E. et al. Central amygdala activation of extracellular signal-regulated kinase 1 and age-dependent changes in inflammatory pain sensitivity in mice. Neurobiol. Aging 56, 100–107 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paterson, R. R. M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry 67(18), 1985–2001 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. & Yu, F. Research progress on the anticancer activities and mechanisms of polysaccharides from ganoderma. Front. Pharmacol. 13, 891171 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Q. & Tie, L. Preventive and therapeutic effect of ganoderma (Lingzhi) on diabetes. Adv. Exp. Med. Biol. 1182, 201–215 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Triterpenes and aromatic meroterpenoids with antioxidant activity and neuroprotective effects from Ganoderma lucidum. Molecules 24, 23 (2019).

    Article 
    CAS 

    Google Scholar 

  • Seweryn, E., Ziala, A. & Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 13, 8 (2021).

    Article 

    Google Scholar 

  • Cor Andrejc, D., Knez, Z. & Knez Marevci, M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 13, 934982 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. H. et al. Ganoderma lucidum pharmacopuncture for the treatment of acute gastric ulcers in rats. J. Pharmacopunct. 17(3), 40–49 (2014).

    Article 

    Google Scholar 

  • Qiu, Z., Zhong, D. & Yang, B. Preventive and therapeutic effect of ganoderma (Lingzhi) on liver injury. Adv. Exp. Med. Biol. 1182, 217–242 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yen, G.-C. & Wu, J.-Y. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 65(3), 375–379 (1999).

    Article 
    CAS 

    Google Scholar 

  • Mau, J. L., Lin, H. C. & Chen, C. C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 50(21), 6072–6077 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mauderli, A. P., Acosta-Rua, A. & Vierck, C. J. An operant assay of thermal pain in conscious, unrestrained rats. J. Neurosci. Methods 97(1), 19–29 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Porreca, F. et al. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Therap. 230(2), 341–348 (1984).

    CAS 

    Google Scholar 

  • Couto, V. M. et al. Antinociceptive effect of extract of Emilia sonchifolia in mice. J. Ethnopharmacol. 134(2), 348–353 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Chu, C. et al. Anti-nociceptive activity of aqueous fraction from the MeOH extracts of Paederia scandens in mice. J. Ethnopharmacol. 118(1), 177–180 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Cui, J. et al. Effect of needling “Housanli” (ST 36) with different retaining-needle time on the pain threshold of mice using the hot water tail-flick test. Chin. Acupunct. Moxibust. 29(8), 653–654 (2009).

    Google Scholar 

  • D’amour, F. E. & Smith, D. L. A method for determining loss of pain sensation. J. Pharmacol. Exp. Therap. 72(1), 74–79 (1941).

    Google Scholar 

  • Kuo, H. C. et al. Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS ONE 17(4), e0266331 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, Z.-C., Hseu, R.-S. & Wang, H.-H. Partial purification and characterization of a 1,3-β-d-glucanase from Ganoderma tsugae. J. Ind. Microbiol. 14(1), 5–9 (1995).

    Article 
    CAS 

    Google Scholar 

  • Tseng, C. Y. et al. Potent in vitro protection against PM(2.5)-caused ROS generation and vascular permeability by long-term pretreatment with Ganoderma tsugae. Am. J. Chin. Med. 44(2), 355–76 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Abstracts from the 4th Global Chinese Symposium and the 8th Symposium for Cross-Straits, Hong Kong and Macao on Free Radical Biology and Medicine. Chin. Med., 2018. 13(2): p. 56.

  • Gould, T. D., Dao, D. T. & Kovacsics, C. E. The open field test. In Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed. Gould, T. D.) 1–20 (Humana Press, 2009).

    Chapter 

    Google Scholar 

  • Bannon, A. W. & Malmberg, A. B. Models of nociception: Hot-plate, tail-flick, and formalin tests in rodents. Curr. Protoc. Neurosci. 8, 9 (2007).

    Google Scholar 

  • Liu, X. et al. Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci. Rep. 9(1), 18683 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tjolsen, A. et al. The formalin test: An evaluation of the method. Pain 51(1), 5–17 (1992).

    Article 
    PubMed 

    Google Scholar 

  • Rosso, M. et al. Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neurosci. Biobehav. Rev. 143, 104928 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sturman, O., Germain, P. L. & Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 21(5), 443–452 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sprott, R. L. & Eleftheriou, B. E. Open-field behavior in aging inbred mice. Gerontology 20(3), 155–162 (1974).

    Article 
    CAS 

    Google Scholar 

  • Firdaus, Z. et al. Centella asiatica prevents D-galactose-Induced cognitive deficits, oxidative stress and neurodegeneration in the adult rat brain. Drug Chem. Toxicol. 45(3), 1417–1426 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belviranli, M. & Okudan, N. Coconut oil ameliorates behavioral and biochemical alterations induced by D-GAL/AlCl(3) in rats. Brain Res. 1823, 148704 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitzelfelt, J. D., Carter, C. S. & Morgan, D. Thermal sensitivity across ages and during chronic fentanyl administration in rats. Psychopharmacology (Berl.) 231(1), 75–84 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raut, A. & Ratka, A. Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats. Neurobiol. Aging 30(6), 910–919 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shoji, H. & Miyakawa, T. Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol. Rep. 39(2), 100–118 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubuisson, D. & Dennis, S. G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4, 161–174 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pepino, L. et al. Formalin-evoked pain triggers sex-specific behavior and spinal immune response. Sci. Rep. 13(1), 9515 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. The antinociceptive properties of the Corydalis yanhusuo extract. PLoS ONE 11(9), e0162875 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scuteri, D. et al. Effects of aging on formalin-induced pain behavior and analgesic activity of gabapentin in C57BL/6 mice. Front. Pharmacol. 11, 663 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Canete, T. & Gimenez-Llort, L. Preserved thermal pain in 3xTg-AD mice with increased sensory-discriminative pain sensitivity in females but affective-emotional dimension in males as early sex-specific AD-phenotype biomarkers. Front. Aging Neurosci. 13, 683412 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fillingim, R. B. et al. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 10(5), 447–485 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skovbjerg, S. et al. Conditioned pain modulation and pressure pain sensitivity in the adult Danish general population: The DanFunD study. J. Pain 18(3), 274–284 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Doehring, A. et al. Effect sizes in experimental pain produced by gender, genetic variants and sensitization procedures. PLoS ONE 6(3), e17724 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pieretti, S. et al. Gender differences in pain and its relief. Ann. Ist Super Sanita 52(2), 184–189 (2016).

    PubMed 

    Google Scholar 

  • Wesolowicz, D. M. et al. The roles of gender and profession on gender role expectations of pain in health care professionals. J. Pain Res. 11, 1121–1128 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Racine, M. et al. A systematic literature review of 10 years of research on sex/gender and experimental pain perception—Part 1: Are there really differences between women and men? Pain 153(3), 602–618 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Edwards, R. R. et al. Effects of gender and acute dental pain on thermal pain responses. Clin. J. Pain 15(3), 233–237 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hellstrom, B. & Lundberg, U. Pain perception to the cold pressor test during the menstrual cycle in relation to estrogen levels and a comparison with men. Integr. Physiol. Behav. Sci. 35(2), 132–141 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butkevich, I. P., Mikhailenko, V. A. & Leont’eva, M. N. Sequelae of prenatal serotonin depletion and stress on pain sensitivity in rats. Neurosci. Behav. Physiol. 35(9), 925–930 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiesenfeld-Hallin, Z. Sex differences in pain perception. Gend. Med. 2(3), 137–145 (2005).

    Article 
    PubMed 

    Google Scholar 

  • De Angelis, F. et al. Sex differences in neuropathy: The paradigmatic case of metformin. Int. J. Mol. Sci. 23, 23 (2022).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *