Lin, Y. Y. & Huang, C. S. Aging in Taiwan: Building a society for active aging and aging in place. Gerontologist 56(2), 176–183 (2016).
Google Scholar
Gerland, P. What’s beneath the future: World population prospects. In Semaine Data-SHS (2023).
Lautenbacher, S. et al. Age changes in pain perception: A systematic-review and meta-analysis of age effects on pain and tolerance thresholds. Neurosci. Biobehav. Rev. 75, 104–113 (2017).
Google Scholar
Sherman, E. D. & Robillard, E. Sensitivity to pain in relationship to age. J. Am. Geriatr. Soc. 12, 1037–1044 (1964).
Google Scholar
Covinsky, K. E. et al. Pain, functional limitations, and aging. J. Am. Geriatr. Soc. 57(9), 1556–1561 (2009).
Google Scholar
Gagliese, L. Pain and aging: The emergence of a new subfield of pain research. J. Pain 10(4), 343–353 (2009).
Google Scholar
Tinnirello, A., Mazzoleni, S. & Santi, C. Chronic pain in the elderly: Mechanisms and distinctive features. Biomolecules 11, 8 (2021).
Google Scholar
Riley, J. L. et al. Age and race effects on pain sensitivity and modulation among middle-aged and older adults. J. Pain 15(3), 272–282 (2014).
Google Scholar
Omar, N. M. et al. Influence of age on pain sensitivity in response to paw pressure and formalin injection in rats: A role of nitric oxide. Gen. Physiol. Biophys. 31(2), 185–194 (2012).
Google Scholar
Legg, E. D., Novejarque, A. & Rice, A. S. The three ages of rat: The influence of rodent age on affective and cognitive outcome measures in peripheral neuropathic pain. Pain 144(1–2), 12–13 (2009).
Google Scholar
Sadler, K. E. et al. Central amygdala activation of extracellular signal-regulated kinase 1 and age-dependent changes in inflammatory pain sensitivity in mice. Neurobiol. Aging 56, 100–107 (2017).
Google Scholar
Paterson, R. R. M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry 67(18), 1985–2001 (2006).
Google Scholar
Wang, M. & Yu, F. Research progress on the anticancer activities and mechanisms of polysaccharides from ganoderma. Front. Pharmacol. 13, 891171 (2022).
Google Scholar
Liu, Q. & Tie, L. Preventive and therapeutic effect of ganoderma (Lingzhi) on diabetes. Adv. Exp. Med. Biol. 1182, 201–215 (2019).
Google Scholar
Wang, C. et al. Triterpenes and aromatic meroterpenoids with antioxidant activity and neuroprotective effects from Ganoderma lucidum. Molecules 24, 23 (2019).
Google Scholar
Seweryn, E., Ziala, A. & Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 13, 8 (2021).
Google Scholar
Cor Andrejc, D., Knez, Z. & Knez Marevci, M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 13, 934982 (2022).
Google Scholar
Park, J. H. et al. Ganoderma lucidum pharmacopuncture for the treatment of acute gastric ulcers in rats. J. Pharmacopunct. 17(3), 40–49 (2014).
Google Scholar
Qiu, Z., Zhong, D. & Yang, B. Preventive and therapeutic effect of ganoderma (Lingzhi) on liver injury. Adv. Exp. Med. Biol. 1182, 217–242 (2019).
Google Scholar
Yen, G.-C. & Wu, J.-Y. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 65(3), 375–379 (1999).
Google Scholar
Mau, J. L., Lin, H. C. & Chen, C. C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 50(21), 6072–6077 (2002).
Google Scholar
Mauderli, A. P., Acosta-Rua, A. & Vierck, C. J. An operant assay of thermal pain in conscious, unrestrained rats. J. Neurosci. Methods 97(1), 19–29 (2000).
Google Scholar
Porreca, F. et al. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Therap. 230(2), 341–348 (1984).
Google Scholar
Couto, V. M. et al. Antinociceptive effect of extract of Emilia sonchifolia in mice. J. Ethnopharmacol. 134(2), 348–353 (2011).
Google Scholar
Chu, C. et al. Anti-nociceptive activity of aqueous fraction from the MeOH extracts of Paederia scandens in mice. J. Ethnopharmacol. 118(1), 177–180 (2008).
Google Scholar
Cui, J. et al. Effect of needling “Housanli” (ST 36) with different retaining-needle time on the pain threshold of mice using the hot water tail-flick test. Chin. Acupunct. Moxibust. 29(8), 653–654 (2009).
D’amour, F. E. & Smith, D. L. A method for determining loss of pain sensation. J. Pharmacol. Exp. Therap. 72(1), 74–79 (1941).
Kuo, H. C. et al. Ganoderma tsugae prevents cognitive impairment and attenuates oxidative damage in d-galactose-induced aging in the rat brain. PLoS ONE 17(4), e0266331 (2022).
Google Scholar
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).
Google Scholar
Liang, Z.-C., Hseu, R.-S. & Wang, H.-H. Partial purification and characterization of a 1,3-β-d-glucanase from Ganoderma tsugae. J. Ind. Microbiol. 14(1), 5–9 (1995).
Google Scholar
Tseng, C. Y. et al. Potent in vitro protection against PM(2.5)-caused ROS generation and vascular permeability by long-term pretreatment with Ganoderma tsugae. Am. J. Chin. Med. 44(2), 355–76 (2016).
Google Scholar
Abstracts from the 4th Global Chinese Symposium and the 8th Symposium for Cross-Straits, Hong Kong and Macao on Free Radical Biology and Medicine. Chin. Med., 2018. 13(2): p. 56.
Gould, T. D., Dao, D. T. & Kovacsics, C. E. The open field test. In Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed. Gould, T. D.) 1–20 (Humana Press, 2009).
Google Scholar
Bannon, A. W. & Malmberg, A. B. Models of nociception: Hot-plate, tail-flick, and formalin tests in rodents. Curr. Protoc. Neurosci. 8, 9 (2007).
Liu, X. et al. Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci. Rep. 9(1), 18683 (2019).
Google Scholar
Tjolsen, A. et al. The formalin test: An evaluation of the method. Pain 51(1), 5–17 (1992).
Google Scholar
Rosso, M. et al. Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neurosci. Biobehav. Rev. 143, 104928 (2022).
Google Scholar
Sturman, O., Germain, P. L. & Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 21(5), 443–452 (2018).
Google Scholar
Sprott, R. L. & Eleftheriou, B. E. Open-field behavior in aging inbred mice. Gerontology 20(3), 155–162 (1974).
Google Scholar
Firdaus, Z. et al. Centella asiatica prevents D-galactose-Induced cognitive deficits, oxidative stress and neurodegeneration in the adult rat brain. Drug Chem. Toxicol. 45(3), 1417–1426 (2022).
Google Scholar
Belviranli, M. & Okudan, N. Coconut oil ameliorates behavioral and biochemical alterations induced by D-GAL/AlCl(3) in rats. Brain Res. 1823, 148704 (2024).
Google Scholar
Mitzelfelt, J. D., Carter, C. S. & Morgan, D. Thermal sensitivity across ages and during chronic fentanyl administration in rats. Psychopharmacology (Berl.) 231(1), 75–84 (2014).
Google Scholar
Raut, A. & Ratka, A. Oxidative damage and sensitivity to nociceptive stimulus and opioids in aging rats. Neurobiol. Aging 30(6), 910–919 (2009).
Google Scholar
Shoji, H. & Miyakawa, T. Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol. Rep. 39(2), 100–118 (2019).
Google Scholar
Dubuisson, D. & Dennis, S. G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4, 161–174 (1977).
Google Scholar
Pepino, L. et al. Formalin-evoked pain triggers sex-specific behavior and spinal immune response. Sci. Rep. 13(1), 9515 (2023).
Google Scholar
Wang, L. et al. The antinociceptive properties of the Corydalis yanhusuo extract. PLoS ONE 11(9), e0162875 (2016).
Google Scholar
Scuteri, D. et al. Effects of aging on formalin-induced pain behavior and analgesic activity of gabapentin in C57BL/6 mice. Front. Pharmacol. 11, 663 (2020).
Google Scholar
Canete, T. & Gimenez-Llort, L. Preserved thermal pain in 3xTg-AD mice with increased sensory-discriminative pain sensitivity in females but affective-emotional dimension in males as early sex-specific AD-phenotype biomarkers. Front. Aging Neurosci. 13, 683412 (2021).
Google Scholar
Fillingim, R. B. et al. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 10(5), 447–485 (2009).
Google Scholar
Skovbjerg, S. et al. Conditioned pain modulation and pressure pain sensitivity in the adult Danish general population: The DanFunD study. J. Pain 18(3), 274–284 (2017).
Google Scholar
Doehring, A. et al. Effect sizes in experimental pain produced by gender, genetic variants and sensitization procedures. PLoS ONE 6(3), e17724 (2011).
Google Scholar
Pieretti, S. et al. Gender differences in pain and its relief. Ann. Ist Super Sanita 52(2), 184–189 (2016).
Google Scholar
Wesolowicz, D. M. et al. The roles of gender and profession on gender role expectations of pain in health care professionals. J. Pain Res. 11, 1121–1128 (2018).
Google Scholar
Racine, M. et al. A systematic literature review of 10 years of research on sex/gender and experimental pain perception—Part 1: Are there really differences between women and men? Pain 153(3), 602–618 (2012).
Google Scholar
Edwards, R. R. et al. Effects of gender and acute dental pain on thermal pain responses. Clin. J. Pain 15(3), 233–237 (1999).
Google Scholar
Hellstrom, B. & Lundberg, U. Pain perception to the cold pressor test during the menstrual cycle in relation to estrogen levels and a comparison with men. Integr. Physiol. Behav. Sci. 35(2), 132–141 (2000).
Google Scholar
Butkevich, I. P., Mikhailenko, V. A. & Leont’eva, M. N. Sequelae of prenatal serotonin depletion and stress on pain sensitivity in rats. Neurosci. Behav. Physiol. 35(9), 925–930 (2005).
Google Scholar
Wiesenfeld-Hallin, Z. Sex differences in pain perception. Gend. Med. 2(3), 137–145 (2005).
Google Scholar
De Angelis, F. et al. Sex differences in neuropathy: The paradigmatic case of metformin. Int. J. Mol. Sci. 23, 23 (2022).
Google Scholar
link