Digital health for aging populations

  • United Nations. World Population Prospects 2022: Summary of Results (2022).

  • Al-khafajiy, M. et al. Remote health monitoring of elderly through wearable sensors. Multimed. Tools Appl. 78, 24681–24706 (2019).

    Google Scholar 

  • Evangelista, L., Steinhubl, S. R. & Topol, E. J. Digital health care for older adults. Lancet 393, 1493 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sim, I. Mobile devices and health. N. Engl. J. Med. 381, 956–968 (2019).

    PubMed 

    Google Scholar 

  • Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Swaroop, K. N., Chandu, K., Gorrepotu, R. & Deb, S. A health monitoring system for vital signs using IoT. Internet Things 5, 116–129 (2019).

    Google Scholar 

  • Chen, S. et al. Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 10, 2100116 (2021).

    CAS 

    Google Scholar 

  • Strauss, D. H. et al. The geriatric acute and post-acute fall prevention intervention (GAPcare) II to assess the use of the Apple watch in older emergency department patients with falls: protocol for a mixed methods study. JMIR Res. Protoc. 10, e24455 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alavi, A. et al. Real-time alerting system for COVID-19 and other stress events using wearable data. Nat. Med. 28, 175–184 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. S., Ghaffari, R. & Rogers, J. A. Sweat as a diagnostic biofluid. Science 379, 760–761 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunn, T. C., Xu, Y., Hayter, G. & Ajjan, R. A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: a European analysis of over 60 million glucose tests. Diabetes Res. Clin. Pract. 137, 37–46 (2018).

    PubMed 

    Google Scholar 

  • Patel, S., Park, H., Bonato, P., Chan, L. & Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21 (2012).

    Google Scholar 

  • Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 18, 497–507 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, J. et al. Electrochemical characteristics based on skin–electrode contact pressure for dry biomedical electrodes and the application to wearable ECG signal acquisition. J. Sens. 2021, 7741881 (2021).

    Google Scholar 

  • Grifantini, K. Tracking sleep to optimize health. IEEE Pulse 11, 12–16 (2020).

    PubMed 

    Google Scholar 

  • Tonino, R. P. B., Larimer, K., Eissen, O. & Schipperus, M. R. Remote patient monitoring in adults receiving transfusion or infusion for hematological disorders using the VitalPatch and accelerateIQ monitoring system: quantitative feasibility study. JMIR Hum. Factors 6, e15103 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, X. et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2021).

    PubMed 

    Google Scholar 

  • Armstrong, D. G., Najafi, B. & Shahinpoor, M. Potential applications of smart multifunctional wearable materials to gerontology. Gerontology 63, 287–298 (2017).

    PubMed 

    Google Scholar 

  • Pauley, M. E., Berget, C., Messer, L. H. & Forlenza, G. P. Barriers to uptake of insulin technologies and novel solutions. Med. Devices 14, 339–354 (2021).

    CAS 

    Google Scholar 

  • Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Bray, E., Everett, B., Mouawad, A., Harrop, A. R. & Brauer, C. Use of the SurroSense Rx system for sensory substitution of the insensate plantar foot resurfaced with latissimus dorsi muscle free flap and skin graft: a retrospective case study. Plast. Surg. Case Stud. 3, 2513826X17716456 (2017).

    Google Scholar 

  • Rashkovska, A., Depolli, M., Tomašić, I., Avbelj, V. & Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors 20, 1695 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. et al. A pilot study of respiratory rate derived from a wearable biosensor compared with capnography in emergency department patients. Open Access Emerg. Med. 11, 103–108 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Monitoring gait at home with radio waves in Parkinson’s disease: a marker of severity, progression, and medication response. Sci. Transl. Med. 14, eadc9669 (2022).

    PubMed 

    Google Scholar 

  • Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paolillo, E. W. et al. Wearable use in an observational study among older adults: adherence, feasibility, and effects of clinicodemographic factors. Front. Digit. Health 4, 884208 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalicki, A. V., Moody, K. A., Franzosa, E., Gliatto, P. M. & Ornstein, K. A. Barriers to telehealth access among homebound older adults. J. Am. Geriatr. Soc. 69, 2404–2411 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baig, M. M., Afifi, S., GholamHosseini, H. & Mirza, F. A systematic review of wearable sensors and IoT-based monitoring applications for older adults—a focus on ageing population and independent living. J. Med. Syst. 43, 233 (2019).

    PubMed 

    Google Scholar 

  • Magdalena, M., Bujnowska, F. & Grata-Borkowska, U. Use of telemedicine-based care for the aging and elderly: promises and pitfalls. Smart Homecare Technol. TeleHealth 3, 91–105 (2015).

    Google Scholar 

  • Greco, L., Percannella, G., Ritrovato, P., Tortorella, F. & Vento, M. Trends in IoT based solutions for health care: moving AI to the edge. Pattern Recognit. Lett. 135, 346–353 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mob. Netw. Appl. 26, 234–252 (2021).

    Google Scholar 

  • Dunn, J. et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 27, 1105–1112 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedman, A. B. et al. Addressing online health privacy risks for older adults: a perspective on ethical considerations and recommendations. Gerontol. Geriatr. Med. 8, 23337214221095705 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, G. M. et al. Accuracy of Dexcom G6 continuous glucose monitoring in non-critically ill hospitalized patients with diabetes. Diabetes Care 44, 1641–1646 (2021).

    Google Scholar 

  • Zhang, Z. et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 4, 29 (2020).

    CAS 

    Google Scholar 

  • Miotto, R., Danieletto, M., Scelza, J. R., Kidd, B. A. & Dudley, J. T. Reflecting health: smart mirrors for personalized medicine. NPJ Digit. Med. 1, 62 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, K., Liggett, A., Ramirez-Zohfeld, V., Sunkara, P. & Lindquist, L. A. Voice-controlled intelligent personal assistants to support aging in place. J. Am. Geriatr. Soc. 68, 176–179 (2020).

    PubMed 

    Google Scholar 

  • Park, S.-m et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, T. J. et al. Passive monitoring by smart toilets for precision health. Sci. Transl. Med. 15, eabk3489 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuwik, P. et al. The smart medical refrigerator. IEEE Potentials 24, 42–45 (2005).

    Google Scholar 

  • Chen, S.-C., Moyle, W., Jones, C. & Petsky, H. A social robot intervention on depression, loneliness, and quality of life for Taiwanese older adults in long-term care. Int. Psychogeriatr. 32, 981–991 (2020).

    PubMed 

    Google Scholar 

  • Locsin, R. C. & Ito, H. Can humanoid nurse robots replace human nurses. J. Nurs. 5, 1 (2018).

    Google Scholar 

  • Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Google Scholar 

  • Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Downs, A. M. & Plaxco, K. W. Real-time, in vivo molecular monitoring using electrochemical aptamer based sensors: opportunities and challenges. ACS Sens. 7, 2823–2832 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahmoudpour, M. et al. Aptamer functionalized nanomaterials for biomedical applications: recent advances and new horizons. Nano Today 39, 101177 (2021).

    CAS 

    Google Scholar 

  • Haupt, K. & Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, S. et al. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens. Bioelectron. 149, 111830 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12, 1288–1310 (2020).

    Google Scholar 

  • Fercher, C., Jones, M. L., Mahler, S. M. & Corrie, S. R. Recombinant antibody engineering enables reversible binding for continuous protein biosensing. ACS Sens. 6, 764–776 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Centers for Disease Control and Prevention. National Diabetes Statistics Report (2022).

  • Daly, A. B. et al. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial. Nat. Med. 29, 203–208 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *